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LETTER TO THE EDITOR 

Exact fractals with adjustable fractal and fracton 
dimensionalities 

D Ben-Avraham and S Havlin 
Department of Physics, Bar-Ilan University, Ramat-Gan, Israel 

Received 11 July 1983 

Abstract. A family of exact fractals is presented. By adjusting two external parameters, 
a wide range of fractal and fracton dimensionalities can be achieved. This includes the 
case of fracton dimensionality of 2, which is critical for diffusion. 

Recently, there has been increasing interest in exact mathematical fractals (Mandelbrot 
1977, 1982). Exact fractals have been shown to be a very useful model in describing 
percolating systems (Gefen et al 1981, Kirkpatrick 1979). The advantage of pure 
mathematical fractals is that one can generally calculate exactly different critical 
exponents related to their various properties. These exponents are easily related to 
analogous properties in percolation or in other systems which can be modelled by 
fractals. Much research is being carried out concerning the conductivity exponent p 
and related problems, such as the anomalous diffusion on fractal-like spaces (Gefen 
et a1 1981,1983, Alexander and Orbach 1982, Ben-Avraham and Havlin 1982, Havlin 
et a1 1983, Rammal and Toulouse 1983). Of particular interest is the question of the 
density of states of fractals (Alexander and Orbach 1982, Alexander 1983, Domany 
et al 1983) and its exponent, the fracton dimensionality (Alexander and Orbach 1982). 
In facl, the fracton dimensionality d is related to diffusion in a special way. It seems 
that d = 2 is a critical dimension in the sense that above this value, the exponent D 
for diffusion ((R(t))”Z t )  is smaller than the fractal dimensionality d, whereas below 
this value, D is greater than d This implies that 6= 2 plays the same role for anomalous 
diffusion as d = 2 for normal diffusion. However, in spite of the interest in fractals 
with d =  2, no such fractals appear in the literature (Rammal and Toulouse 1983). 

In this letter, we present a family of exact mathematical fractals which are reminis- 
cent of the Sierpinski sponge. All the exponents of interest can be easily calculated. 
By adjusting two external parameters, a wide range of values of d and d= can be 
achieved, including the interesting case of d =  2 discussed above. 

We define a family of exact fractals as follows. One starts with a d-dimensional 
hypercube which is subdivided to bd smaller hypercubes. For d = 2 the first stage of 
the fractal is a regular Cartesian grid of ( b -  bx) rows of b connected squares and bx 
rows each containing ( b  - bx)  squares. Each square belonging to the fractal is further 
diluted as in the first stage, and this procedure is continued indefinitely. In figure 1 
we show an example of such a fractal embedded in a square with b = 5 and x = 3. 
Two stages of the procedure described above are shown. The figure is intended to 
show what we mean by ‘a regular Cartesian grid. . . ’. Similarly for d = 3 the first stage 
of the fractal is a regular Cartesian grid built of ( b  - bx) planes of cubes arranged as 
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Figure 1. Example of a fractal embedded in a square 
lattice with b=5  and x = f .  Two stages of the fractal 
are shown. 

U 

b 

Figure 2. Calculation of the conductivity. A voltage 
is applied between the two lines a and b. The arrows 
point to the rows contributing to the first term in 
equation (2). 

in the first stage of the fractal for d = 2 ,  which are connected by the remaining bx 
planes each consisting of ( b  - b ~ ) ~  cubes. So for d dimensions the first stage of the 
fractal consists of (6  - bx) hyperplanes which are just built as the first stage of the 
d - 1 fractal, and these planes are connected by bx hyperplanes each consisting of 
( b  - b ~ ) ~ - ’  hypercubes. Thus the fractal dimensionality d is generally given by 

bd = bx( b - b ~ ) ~ - ’  + ( b  - bx)b=, (1) 
where b’= b by definition. This recursion can be solved to yield 

bd = bdfd(x) E bd-Pl” 

( 2 )  
f d ( x )  = (1 - 1 + ( d  - l ) X ]  = b-”“. 

In order to derive the conductivity exponent /*/U, define the exponent c by 
p ( b a ) = b f p ( a )  and the relation / * / v = d - 2 + 1  (Gefen et a! 1981). We cannot 
calculate the recursion formula for cexactly, but in the following we shall present two 
different recursion formulae which give cl and c2 such that cl cs c2, and we shall 
discuss a limit for which f ,  + c2. We first present the arguments for d = 2. The whole 
fractal has a resistance p ( a ) .  Upon magnification by b, each of the b ’ - ( b ~ ) ~  squares 
comprising the fractal has the same original resistance p ( a ) .  The resistance of the 
whole fractal is now p ( b a ) .  

Imagine, for example, that one measures conductivity of a fractal between two 
lines as in figure 2.  In the first approach, one ignores the internal structure of the 
squares in the succeeding stages and considers them as being ‘full’ and not further 
diluted. Clearly this underestimates the real resistance p (  ba) ,  since the different squares 
are assumed to match all along their boundaries, which is not in fact correct. By this 
assumption, 

bi l=  x b / (  b - x b )  + (6 - xb) /  b = x / (  1 - X )  + 1 - X ,  d = 2 .  (3)  
The first term represents the contribution of ( b  - xb)  parallel square resistances lying 
on xb different rows. These rows are marked with arrows in the example of figure 2.  
The second term represents the resistance of the remaining ( b - x b )  rows which are 
in practice resistances with an area of b. 
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In the second approach, we neglect all the horizontal currents that might develop 
and thus only the contributions of ( b  - bx) parallel chains of resistance b p ( a )  contribute 
to p(ba) .  Then 

b ‘ z = b / ( b - x b ) = l / ( l - x ) ,  d = 2 .  (4) 

fl s & 12. ( 5 )  

This time we obviously overestimate the total resistance. Therefore, it follows that 

The above arguments can easily be extended for d > 2. One has 

bCl = x b / ( b - x b ) d - l + ( b - x b ) / b z  

or (6) 

b d - Z + i ,  = /(  1 - X ) d - ’ +  ( 1  - X ) / f d - I ( X )  = bwl’”, d > 2 .  

The first term represents the contribution of ( b  - ~ b ) ~ - ’  parallel resistances lying on 
xb hyperplanes of dimension d - 1 .  The second term takes into account the remaining 
( b  - xb)  hyperplanes whose resistance is inversely proportional to their area bd-’. The 
generalisation of the second approach is 

bT2 = b / (  b - Xb)d-’ 

or (7) 
bd->+C2 = 1 / ( 1 -  x ) d - l  = b W z / ” ,  

Now consider the case of x = 1 - E with E << 1 .  Then, one obtains from equations (3) 
and (6) for any d 3 2,  

p l / v = ( l - d ) l n  E/ln b-[(d- l ) /d]s / ln  b + 0 ( e 2 )  (8) 

p2/  v = ( 1  - d)  In &/ln b ( 9 )  

and from equation (7) ,  

(exact). 

Since p 1  s p s p2 according to equation ( 5 ) ,  one has 

p / v = ( l - d )  In E/ln ~ - O ( E ) .  (10) 

The fracton dimensionality d is related to the exponents discussed above (Alexan- 
der and Orbach 1982) by 

d = 2 d / D  ( 1 1 )  
where D is the anomalous diffusion exponent (Ben-Avraham and Havlin 1982, Havlin 
et a1 1983, Gefen et a1 1983) 

D =  2 + p / v  - p /  Y =  d+ ( 1 2 )  

Thus, in fact, b and x determine d and d of the fractal. In table 1 ,  we present some 
numerical values for the expon_eiits d, d and r obtained for several values of b and x 
for d = 3.  For the exponents d and’ &he table gives two limiting values ( r  and 12) 
from (6) and (7). However, for x = 1 - E, these two values coincide to O( E )  and then 
only one value is displayed in table 1 .  It is clearly seen that a wide range of values,of 
d and d can be achieved. This includes the cases of d greater than, equal to or smaller 
than 2 .  Moreover, it is seen from the table that more flexibility for d and d is achieved 
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Table 1. Dependence of the exponents on band x for d = 3. Whenever there is a difference, 
the upper values refer to cl and the lower values to f2 .  

X b d d' r 
0.5 2 2.00 1.66 0.42 

1.33 1 .oo 
5 2.57 2.36 -0.39 

2.11 -0.14 

0.8 5 1.59 1.29 0.88 
1.23 1 .oo 

20 2.24 1.99 0.01 
1.94 0.07 

50 2.42 2.21 -0.23 
2.16 -0.18 

0.99 1 o2 1.24 1.11 1 .oo 
1 o4 2.12 2.00 0.00 
1 o6 2.41 2.32 -0.33 

0.999 103 1.16 1.07 1.00 
106 2.08 2.00 0.00 
1 oq 2.39 2.32 -0.33 

in the limit of x = 1 - E with E << 1, for which one knows the exact solution to O ( E ) .  
As a matter of fact, 

d =  2 hl[ bdfd(x)]/ln[b2( 1 - X)'-dfd(X)] + o( E ) .  (13) 
In conclusion, we have presented a fractal family with two adjustable para- 

meters, which allow one to achieve a wide range of values d and d It is interesting 
to note that from (l), ( 6 )  and (7),  we can relate pJP and p2/P to x and d independent 
of b, so one expects p / p  to have the same features. The limits x + 0, b = constant or 
x=constant, b+co are equivalent, as seen from ( l ) ,  ( 6 )  and (7). In this limit, the 
fractals behave like homogeneous space, that is, d = 6= d. It would be interesting to 
study possible models of percolation using these fractals or other similar adjustable 
fractals. It is clear that in this way, one is able to fix the desired exponents. However, 
we do not expect that the same numerical values of the parameters x and b will 
describe percolation in different dimensions. 

We thank Professor S Alexander for valuable discussions. One of the authors (DBA) 
wishes to thank the 'Wolf Foundation' for financial support. 
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